
withdrawing substituents. The measurement of lipophilicity, using 
experimental partition coefficient data, was more dependable than 
an estimation from literature data collected in a different system. 
The preference for actual measurement over the estimation of li- 
pophilicity is even more obvious when one deals with drug mole- 
cules having a complicated molecular structure. 
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Selecting Key Parameters in Pharmaceutical 
Formulations by Principal Component Analysis 

N. R. BOHIDARX, F. A. RESTAINO, and J. B. SCHWARTZ 

Abstract 0 The role of principal component analysis in the selec- 
tion of pharmaceutical formulations is presented. The objective 
and the procedure of the analysis are discussed in detail. The tech- 
nique was successfully applied to a system consisting of 10 re- 
sponse variables (tablet properties). Analysis of the results showed 
that the first component (dissolution) and components one and 
two together (dissolution and disintegration) contributed 95.4 and 
99.3%, respectively, to the overall information about the formula- 
tions and that eight of 10 response parameters contributed nothing 
further to the overall information. The results obtained from this 
method of analysis may be found useful for achieving economy in 
both cost and time of measuring responses. Principal component 
analysis also provides a basis for understanding the underlying 
mechanism of the system under consideration. 

Keyphrases 0 Pharmaceutical formulations-selecting key pa- 
rameters by principal component analysis, examples Formula- 
tions, pharmaceutical-selecting key parameters by principal com- 
ponent analysis, examples 0 Principal component analysis-se- 
lecting key parameters in pharmaceutical formulations 

In the development of a drug delivery system, a re- 
search pharmacist usually measures several response 
parameters. For instance, 10 or more parameters 
were considered in the development of a pharmaceu- 
tical tablet formulation (1). Based on all of these pa- 
rameters, one attempts to find those levels of the for- 
mulation factors (diluent ratio, compressional force, 
etc.)  for which the system is considered optimum. 

Since a large number of interrelated response vari- 
ables is generally involved, it is relevant to ask how 
the interrelation and covariation of these measure- 
ments might be represented and whether fewer mea- 
surements might not carry all the necessary informa- 
tion for accomplishing a specific objective. 

When several formulations are available, the devel- 
opmental pharmacist must determine how best to 
distinguish between them. When one is choosing be- 
tween two or three, the trend may be obvious. For ex- 
ample, the formula changes made may cause no dif- 
ference in tablet hardness but considerable differ- 
ence in disintegration characteristics. But when a 
long list of formulations is available or, more precise- 
ly, when one has infinite possibilities (as in computer 
optimization) and is dealing with many parameters, 
the trend is less obvious. 

One may have certain basic constraints, such as a 
minimum hardness value, but it is nevertheless im- 
portant to know which property or properties can be 
used to distinguish between choices. Generally, an 
educated guess is made, based on experience with the 
system and with pharmaceutical systems in general. 

But there is a mathematical method to select those 
variables that best distinguish between formulations 
and those variables that change most drastically from 
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one formulation to another and which should be the 
criteria upon which one selects a formulation. 

A multivariate statistical procedure called “princi- 
pal component analysis” can effectively be used to 
answer these questions. Basically, this method first 
finds the function of the observations that has the 
largest variance and then finds the function, inde- 
pendent of the first function, having the largest vari- 
ance. J t  then finds the function, independent of the 
first two functions, with the largest variance and so 
on. 

If p variates (responses) are observed, it is obvious 
that p of these could account for all of the variability 
in the original observations. The problem is whether 
fewer variates might be used. If so, some principal 
components might not contribute anything to the 
overall variability; thus, they would not help in dis- 
tinguishing one formulation from another. 

Large sets of data should not be subjected to a 
principal component analysis merely to obtain fewer 
variables to work with without regard to an overall 
objective. The objective should be established first 
and then the principal component model should be 
used only if it  complements the objective. However, 
tremendous simplification of the data can often be 
effected for problems where principal component 
analysis is appropriate. 

The primary purpose of this paper is to demon- 
strate the role of principal component analysis in 
pharmaceutical formulation development by apply- 
ing the procedure to the data from an optimization 
experiment previously described (1). Ten response 
variables were measured on each of 27 formulations, 
and the variables substantially contributing to the 
overall information were identified. 

The theoretical section is meant to serve as a guide 
for following the steps in the principal component 
analysis technique. However, computer programs can 
perform all of the indicated operations, and it is only 
necessary to feed in the raw data. A familiarity with 
the theory is useful for analysis of the results and for 
those who wish to modify available programs. 

EXPERIMENTAL 

The 10 parameters shown in Table I were measured on each of 
the 27 tablet formulations considered for the experiment’ de- 
scribed in detail in Ref. 1. Thus, the data set to be subjected to 
principal component analysis contains 27 values for each response 
shown in Table I. 

THEORY AND PROCEDURE 

The structure of the data associated with the experiment is pre- 
sented in the matrix form shown in Table 11. 

For the purpose of describing the procedure, let Y;h ( i  = 1 ,2 , .  . ., 
p ;  h = 1, 2, . . ., N )  denote the numerical value associated with the 
hth experiment for the i th  response variable, and let p and N rep- 
resent the number of response variables and the number of experi- 
ments for each parameter considered, respectively. In this case, p 
= 10 and N = 27 in Table 11. The value of Y L k  can be the mean of 
several measurements. 

The technique utilized here may he applied to any multivariate system 
and need not be limited to the statistically designed set of experiments con- 
sidered here. 

Table I-Response Variables 

Symbolic 
Des- 

ignation Response Variable Units 

Y, (DT) Disintegration time Minu tes  
Y, (HD) Tab le t  breaking strength Kilograms 
Y3 ( D R )  Dissolution Percent released i n  

30 min 
Y, (FR) Friabil i ty Percent weight loss 
Yj (TH) Thickness uniformity RSD, % 
Y, (PO) Porosity Milliliters per g ram 
Y7 (MP) M e a n  pore diameter  Micrometers 
Y8 (WT)  Weight uniformity RSD, % 
Y, (TB) T a b l e t  breakage N u m b e r  of chipped 

Yla ( G M )  Granulat ion mean diame- Mill imeters 
tablets  

ter 

The variance ( S , , )  and the covariances (S,,, i # j )  associated 
with the p parameters are then calculated as follows: 

where i = 1 , 2 , .  . ., p ,  and: 

covariance = S,J(i z J )  = CY,~Y, ,  - 
[ k y l  

I ‘ J t  

wherei = 1,2, .  . . . p  and j = 1,2, .  . . , p .  
There would be a total of p variances and lbz p ( p  - 1) covarian- 

ces associated with p parameters. There will be 10 variances and 
45 covariances when 10 parameters are considered. The variance 
and covariance quantities are then arranged in a square matrix 
form as follows: 

s,, SI2 ... 
s,, s,, ... q r 

= = I  
This matrix is called the variance-covariance matrix and is de- 

noted by the greek letter Z (sigma). The variances a le  arranged in 
the main diagonal of the matrix and the covariances are placed in 
their respective pff-diagonal positions. Since S,, =, S,, ( i  # j ) ,  one 
has only % p ( p  + 1) distinct elements in the matrlx. If there are p 
parameters, then the dimension of this matrix is ( p  X p )  with p 
rows and p columns and there are p 2  4ements in the matrix. 
When p = 10, the dimension of Z is (10 X 10) with 100 elements in 
the matrix. 

The determinant of the matrix reduces these p 2  (here 100) ele- 
ments to a single number. This number represents the variance of 
the extire system, usually called the generalized variance. This sta- 
tistic is helpful for comparing the variances of two different sys- 
tems. The primary interest here, however, is in the magnitude of 
the variances of the individual components and their relative in- 
formation within the system under consideration. So consider the 
determinant of the matrix (Z - XI), where I is the identity matrix 
with ones in the main diagonal and zeros elsewhere and, expressed 
explicitly, gives: 

IZ - A I I  = 

s11 - X I  S I ,  ... s,, 
321 s,, - h, ... s,, 

m. 4)  

S P I  S,, ... s,, - A, 
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Table 11-Data Matrix 

1 Yl 1 y2 I y31 y41 Y5, Ye1 y? 1 Y*1 Yo1 Y10,l 
2 Y12 Y22 y32 y42 y52 y62 Y72 Y82 YD2 YlO.2 
3 Yl3 y2 3 Y33 Y43 Y63 Ye3 y13 Y83 Y93 YIOJ 

In this equation, the Xi’s (i = 1, 2, . . ., p )  are unknown. By setting: 

IZ - A l l  = 0 (Eq. 5) 

and expanding the determinant on the left, one has a polynomial 
equation of pth order of the following form: 

IZ - XI( = f(A) = (-A)P + aP-l(-A)’-’ + ... -t 
a,(-A) + a, = 0 (Eq. 6) 

where the coefficients a,’s are, but for signs, the sum of all of the 
principal ith-order minors of the determinant of the variance-co- 
variance matrix 2. A pth-order polynomial would yield p roots 
(zeros of the polynomial). These roots (Xi’s) are known as charac- 
teristic roots, latent roots, or eigenvalues. The term “eigenvalue” 
will be used in the subsequent reference to the roots. These eigen- 
values (XI, X p ,  . . ., A,) represent the variances of each “orthogonal” 
component of the system. The variance-covariance matrix of the 
orthogonal system (A) has the following structure: 

It is clearly seen in Eq. 7 that the original system has been trans- 
formed to an orthogonal system in which the covariances of the 
components have been reduced to zero (hence the term orthogonal 
system is used). The generalized variance of the original system is 
identically equal to the generalized variance of the orthogonal sys- 
tem, that is: 

IZI =‘lAl (Eq. 8 )  

This clearly indicates the complete preservation of the total infor- 
mation of the original system in the transformed system. The 
orthogonal system provides an estimation of the relative contribu- 
tion of each component to the overall information. Let 0 = XI + A:! + . . . + A,; then 100XlO-l, lOOA20-’, . . ., 1O0Xp0-’ are the respec- 
tive relative contribution (in percent) of each of the p components 
of the system to the overall information. 

Now consider the structure of each component. Associated with 

Table 111-Eigenvalues, Relative Information, 
and Cumulative Relative Information Associated 
with Each Component 

Relative Cumulative 

Principal values % Information, 

I 578.4 9 5 . 4  9 5 . 4  
I1 23.9 3 . 9  9 9 . 3  

I11 2.2 0 . 4  9 9 . 7  
IV 2 . 0  0.3  100.0 
Total  100.0 

Eigen- Information, Relative 

Component (h i )  (iooxie -1) % 

each eigenvalue A, ( r  = 1, 2, . . ., p )  is a set of p coefficients, ur : ,  
u,:!, . . ., urp; r = 1, 2, . . ., p. This set of coefficients, called the ei- 
genvector of eigenvalue A,, is a solution of the equation: 

(Z - A,Z)v = 0 r = 1,z ...,p (Eq. 9)  

where I is the identity matrix with ones in the main diagonal and 
zeros elsewhere. This equation is expressed explicitly as follows: 

... SIP 

where r = 1,2 ,3 , .  . ., p .  
The magnitudes of the coefficients associated with those princi- 

pal components that are substantially contributing to the overall 
information are of interest in the interpretation of the principal 
component analysis of the system under consideration. 

The codes of a FORTRAN program for computing the eigenval- 
ues and eigenvectors of a real symmetric matrix are available (2) 
and are suitable for adoption into any computer system without 
considerable effort. 

The detailed mathematics of the procedure can be found in Ref. 
3. 

RESULTS AND DISCUSSION 

The results of the principal component analysis associated with 
the system under consideration are presented in Tables 111-V. The 
results presented in Tables 111 and IV pertain to the situation in 
which all 10 parameters were included in the analysis, as does 
Analysis I in Table V. The other results presented in Table V per- 
tain to situations where two or more parameters were excluded 
from the system. This approach is not an essential feature of the 
principal component analysis. However, it is provided here to illus- 
trate the results of the analysis in the presence or absence of cer- 

Table IV-Coefficients of Eigenvectors Associated 
with First Two Principal Components 

Principal Principal 
Component Component 

Parameter I I1 

Dissolution (DR) 
Porosity (PO) 
Friability (FR) 
Disintegration time (DT) - 

0 . 9 8  0 . 2 2  
0.00 0.00 
0.00 0.00 
0 . 2 2  0 . 9 7  

Weight-uniformity ( W T )  - 0 . 0 1  0 . 0 3  
Thickness uniformity (TH) 0.00 0.00 
Granular mean diameter (GM) 0.00 0.00 
Tablet  breakage (TB) 0.00 0.00 
Mean pore diameter (MP)  0.00 0.00 
Tablet  breaking strength (HD) 0 . 0 1  0 . 1 2  
Relative information, % 9 5 . 4  3 . 9  
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Table V-Relative Information (Percent)  of Parameters for Five Principal Component  Aaalyses 

Analysis I Analysis I1 Analysis I11 Analysis I V  Analysis V 
Order  of Relat ive Order  of Relative Order  of Relat ive Order  of Relat ive Order of Relat ive 

Serial Param- Infor-  Param- Infor- Param- Infor- Param- Infor-  Param- Infor- 
Number  eters ma t ion  eters mation eters ma t ion  eters ma t ion  eters mation 

- - - 9 5 . 4  ( D R )  9 5 . 4  - - - 
- - - - - - 3 . 9  

0 . 4  
0.3 

- - - - (DT) 
5 2 . 5  
4 4 . 9  - - - - 

(DR) 3 . 9  

K2 0 . 3  

1 
2 
3 
4 

(DT) 0 . 4  

- 10 (PO)’ 0 . 0  - (PO) ’ 0.0  (PO)’ 0 . 1  (PO)’ 0 . 2  
T o t a l  100.0 1 0 0 . 0  100.0 100.0 1 0 0 . 0  

0 Represents a rounded figure. 

tain parameters. The information-analysis (variance-analysis) of 
the first four components is given in Table 111. The structure-anal- 
ysis of the first two components is presented in Table IV. 

Table 111 lists the first four components, their respective eigen- 
values, and the relative information calculated from them. An ex- 
amination of these data shows that the total information contained 
in the system was contributed by these first four of the 10 princi- 
pal components. In other words, the last six principal components 
did not contribute anything to the overall information. Further- 
more, the first principal component Contributed as much as 95.4% 
of the total information. 

I t  is necessary now to conduct the structure-analysis of the com- 
ponents. The results presented in Table IV for principal compo- 
nent I reveal that  “dissolution” was the predominant parameter of 
the component by sharing the largest value (0.98) among the coef- 
ficients associated with the component. Now, by relating the re- 
sults of the variance-analysis and the structure-analysis, it may be 
inferred that dissolution accounted for most variabilities in the 
system. In other words, dissolution contained the most informa- 
tion concerning the power of distinguishing among the 27 formula- 
tions under consideration. If the objective is to achieve the opti- 
mum levels of the formulation factors (l), then constraining the 
dissolution parameter would lead to a faster selection of the opti- 
mum formulation than would constraining any other parameter 
considered. 

Component I1 in Table 111 contributed only 3.9% of the total in- 
formation. A structural analysis (Table IV) reveals that  “disinte- 
gration time” was the predominant parameter associated with this 
principal component. The two parameters, dissolution and disinte- 
gration, yielded a cumulative relative information of 99.3%. The 
same procedure can be followed for each component. 

In Table V, the parameters are presented in the order of the rel- 
ative information contributed. The results of the principal compo- 
nent analysis involving all parameters in the system are shown in 
Analysis I. A discussion of these results was already presented. 
Analysis I1 shows the results of the principal component analysis 
involving only the first five parameters. The results of Analyses I 
and I1 are identical with respect to the order and magnitude of the 
relative importance of the first five parameters. 

The results of the principal component analysis involving only 
the last. eight parameters are presented in Analysis 111; weight uni- 
formity and tablet breaking strength become the predominant pa- 
rameters in this particular system. The results of the principal 
component analysis involving only the last six parameters are pre- 
sented in Analysis IV; friability, mean pore diameter, and tablet 
thickness become the predominant parameters in this system. The 
results of the principal component analysis involving only the last 
five parameters are presented in Analysis V, mean pore diameter, 
tablet breakage, and tablet thickness are the predominant parame- 
ters of this particular system. These types of analyses would pro- 

vide a basis for a general understanding of the underlying mecha- 
nisms of the particular system considered. 

A word of caution is in order. The results and the conclusions as- 
sociated with a principal component analysis pertain only to the 
specific system to which the analysis was applied. Although the 
procedure may be applied to any multivariate system, any extrap- 
olation of the results of one system to another is not appropriate. 
Each system must be analyzed separately and the results so ob- 
tained must be interpreted independently. 

CONCLUSION 

In this study it was clearly shown that principal component 
analysis can play an important role in pharmaceutical formulation 
by identifying parameters that are substantially contributing to 
the overall information associated with the system. I t  was observed 
that the first principal component contributed as much as 95.4% of 
the total information. The first two principal components together 
contributed as much as 99.3% of the overall information. Dissolu- 
tion was identified as the predominant parameter of the system. 
Therefore, this parameter alone could effectively be used in the 
comparison of candidate formulations and in the constraining op- 
eration ( 1 )  for a faster selection of the optimum formulation. 

Disintegration was identified as the next important parameter. 
All other parameters did not contribute substantially to the overall 
information. This information is vital in that  one would be able to 
achieve economy in cost and time of measuring responses. Princi- 
pal component analysis could also be used to provide a basis for 
understanding the underlying mechanism of the system. 
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